The Service Development Environment (SDE)

Version 4.4

Executive Summary

This document describes the Service Development Environment, which is intended to support the development
of Service-Oriented Software by integrating various tools across development, analysis, and deployment of
service-oriented software systems.

In this document, the current state of the Development Environment is reported, along with hints and tutorials
for using the Development Environment as well as creating new tools for this platform, and recommended
future steps.

Contents
1 About the Development ENVIFONMENT ..ot 2
11 Aim of the Development ENVIFONMENT..........cccooiiiiiiiiiii e 2
1.2 HigN-LEVEI OVEIVIBWoviiiieiiciece ettt sttt et e et e be e sresteesbenre s 2
13 Basic Concepts of the Development ENVIFONMENTcooviiiiiineneieieesese e 3
2 Installing the Development ENVIFONMENT.........cccoo i 5
2.1 REQUITEMENTS ...ttt ettt e r et e e se e st e e beesbesbeess e besreebesbaessesteeteeresreas 5
2.2 INSEAIING ThE TOOLo et st e re et s re e re e 5
2.2. 1 OVEIVIBW ..tttk bbbttt bt bbbt ettt ettt n e 5
2.2.2 DEIAIIEA STEPS ...cuviiiiciiiti ettt ettt re e re e r e beetaenreare s 6
KT O L= gl €U T [OOSR 9
3.1 INEFOTUCTION ...ttt bbbttt b bbb 9
3.2 SDE PEISPECTIVE ...ttt bbbttt bbb 10
3.3 Using the Generic Wizard Ul and the Blackboardccccooiiiiiiiiiiiic e 11
3.4 Using the Orchestration FUNCEIONAIITYccooiiiiiiiiiieee s 15
3.4.1 Orchestrating With the Shell ... 15
3.4.2 USING SDE SCHIPLS ..ecuiiitiiie ittt ettt sttt ettt et s reere e besaeennesre e 16
3.4.3 Graphical Orchestration..........cccceiiiiiiiiii e e e 18
3.5 L@ T 1S (o] 0 T o Yo I 1 PSSR 22
N B 1- Y=Y (o] o T o VT Lo [OOSR 23
4.1 Development Environment ArchiteCtUreooviieieiieie e 23
4.1.1 Core EXIENSION POINT......cciiieiiiiiie ettt st e e ne e 24
O o1 £ N o PSPPSRI 24
4.2 Creating TOOIS. . ..o ittt ettt e e et et e sreereeneenne s 25
4.2.1 Walkthrough for an EXample TOO.........cccooiiiiiiii e 26
4.2.2 Adding Model HaNAIINGoooiiiiieiiieeeee e 34
G T AN AV Vg ot To I o] o ot OSSR 35
5 Where t0 GO frOmM HEIE ...ttt en e e nne s 37
5.1 Publishing YOur OWN TOOISccoiiiiiiiie e 37
5.2 Bug Reporting and ENhancement REQUESTScovveiriiiriie e 37
B RETEIEINCES ..ottt ettt et e et seeere e e nre s 38
6.1 FIQUIES bbbt bttt bbbt e e 38

6.2 LIS vttt ettt ettt ettt e e e e ae————eera————e e e ———teta———te ettt era———tena——ttena—rrenarrrees 39

Service Development Environment (SDE) 10/2010

1 About the Development Environment

The Service Development Environment is intended to support the development of Service-Oriented Software
by integrating tools across the development, analysis, and deployment of service-oriented software systems.

1.1 Aim of the Development Environment

The main aim of the Service Development Environment is to provide a service-oriented platform for
development tool integration. On this platform,

e tools are services, and provide arbitrary functionality
e tools can be used as-is, or combined using orchestration mechanisms
e tools can be published and discovered

By integrating them into the Service Development Environment, tools become available to a broader user range
and in a larger context, and are thus more usable by developers.

In the view of the Service Development Environment, the tools each consist of functions, which can be invoked
in the Development Environment with or without User Interface (Ul). The Ul is not necessarily tied to a
specific function, but can also be provided in a cross-function way. Tools are easy to write, add, and remove.
Accessing remote or legacy applications is possible.

To enable composition, tools are intended to provide an Application Programming Interface (API) allowing
tool orchestration with arbitrary orchestration languages. Included within the SDE is a graphical orchestration
with data-driven activity diagrams and a JavaScript orchestrator.

1.2 High-Level Overview

As a tool for developing, analyzing, and deploying service-oriented software systems, the Development
Environment must feature an IDE-like Ul, while at the same time keeping requirements for tool builders low as
not to hinder integration of such tools. To allow this, the Service Development Environment is itself built in a
service-oriented way on top of the OSGi platform. The graphical part of the Development Environment and
contributed tools — if available — is built on Eclipse technology.

This architecture is laid out in Figure 1.

Service Development Environment (SDE) 10/2010

Eclipse ul ul ul ul
Some Tool Java Wrap Native Wrap
Bundle Bundle Bundle
OSGl

Sensoria Core

v

Equinox Bundles

Java Java tool

Native (OS) Native tool

Figure 1: Service Development Environment architecture

As can be seen in the figure, the Development Environment core and the tools are based on OSGi only (or,
more specifically, the Equinox implementation of OSGi). Tools may use existing Java implementations or
native code as they wish. Being only based on OSGi, they can be invoked completely independently from
Eclipse. If they additionally choose to provide a Ul, this Ul is integrated into and based on the Eclipse platform,
as is the Ul for the SDE core itself.

1.3 Basic Concepts of the Development Environment

As outlined above, the Development Environment provides an environment for using and orchestrating tools.
The tools themselves are provided by various manufacturers and in general must be installed separately;
however, some are already distributed with the Development Environment as examples.

The basic functionality of the core is as threefold:

e It provides access to all the registered tools by an API (which can be seen as a basic discovery service)
and by a Ul. The API allows retrieving tools based on their ID or name and is intended to be used
from within Java, while the Ul allows graphical browsing of registered tools directly for the end user.

e It provides access to the tool functions by API and by Ul as well. The API allows calling arbitrary
functions on the registered tools from within Java, while the user interface provides a generic Ul for
executing these functions, storing the results, and re-using results as input for other functions.

e It provides an orchestration mechanism using a) activity diagrams and b) JavaScript. Using such
orchestrations, the API discussed in the previous two points can be accessed and tools can be
orchestrated in a simple way.

For most tools, integration into the Service Development Environment is only one way of providing users with
access to their functionality. Thus, the Service Development Environment only imposes a minimum number of
requirements on tool writers. In particular, tools can be used in any of the following three ways by the user in
the Development Environment:

e By using the generic wizards outlined above.

e By entering commands in a manual orchestrator like the SDE Shell.

Service Development Environment (SDE) 10/2010

e By using Uls provided by the tools themselves, which are independent of the Development
Environment UI.

Besides simply using their functionality, tools can also be orchestrated with partial help from the platform. This
can be achieved by different means as well. In particular, the following scenarios are envisioned:

e Orchestration using the built-in shell

e Orchestration using Java, i.e. within other tools

e Orchestration by using JavaScript-based tools

e Orchestration by using the graphical orchestration inside SDE

Tools to be used as part of the Development Environment must be implemented as OSGi bundles and contain a
declarative description of their functionality but are otherwise unlimited in their implementation. In particular,

e tools may be written in Java and may consist of an arbitrary number of libraries, other Eclipse plug-
ins, or external code

e tools may also wrap native code, thereby providing an interface to non-Java software

e tools may include functionality for calling remove services, thereby providing the link to Web services

Service Development Environment (SDE) 10/2010

2 Installing the Development Environment

As the Development Environment features both an OSGi and an (Eclipse)-Ul component, the recommended
way is to install it onto the Eclipse platform, which will be detailed here.

2.1 Requirements

The Development Environment is built on cutting-edge technology. It requires two components to be installed:

e Java JDK 1.6. Former versions, including 1.5, will NOT work as the Development Environment uses
the Java 6 Scripting Engine. Note that you will need the JDK, not only the JRE. The JDK can be
downloaded from http://java.sun.com/javase/downloads/index.jsp.

e Eclipse version 3.4. The newest version of Eclipse 3.4.X can be downloaded from
http://download.eclipse.org/eclipse/downloads/.

It is recommended that the Java VM to use is explicitly specified when running Eclipse. This is achieved with
the -vm command line argument (for example, -vm c:\jre\bin\javaw.exe). Without -vm, Eclipse will use the
first Java VM found on the O/S path. Also, within Eclipse, the right JDK must be selected in the preferences
before starting a Runtime Workbench.

The Java JDK 1.6 must be selected in Eclipse (Window > Preferences > Java > Installed JRES...) as the default.

2.2 Installing the Tool
2.2.1 Overview

Once Eclipse has been installed, the Development Environment core and many tools can be installed via update
sites. The main update site for the Development Environment core is

http://svn.pst.ifi.lmu.de/update/sde/

This update site contains two features:
e The core itself
e The development feature which eases development of new SDE tools

If you are familiar with Eclipse update sites, simply point Eclipse to this URL and download all the items
provided. A more detailed explanation can be found in the next section.

http://java.sun.com/javase/downloads/index.jsp
http://download.eclipse.org/eclipse/downloads/
http://svn.pst.ifi.lmu.de/update/sde/
http://svn.pst.ifi.lmu.de/update/sde/

Service Development Environment (SDE) 10/2010

2.2.2 Detailed Steps

Begin the installation by selecting the following menu path from the Eclipse main menu:

= Java - Eclipse SDK i E@g
File Edit Source Refactor MNavigate Search Project Run Window m

il B-O-Q- BEG- @ P @ Welcome

[% PackageExp 2 . Te Hierarchﬂ =g (& Help Contents H =8

a% &7 Search not available.
Dynamic Help

Key Assist... Ctrl+Shift+L
Tips and Tricks...
Cheat Sheets...

Software Updates...

About Eclipse SDK

& Problems &3 @ Javadoc} @; Declaration} = =0
0 items
Description ’ Resource Path Lo
< T 3

Figure 2: Selecting Software Updates

A dialog will show up with two tabs: Installed Software and Available Software. Select the Available
Software tab. Then, click Add Site..., and enter the following URL:

http://svn.pst.ifi.lmu.de/update/sde/

Select OK. The dialog now shows the new update site. Select the complete site as shown in the next figure.

http://svn.pst.ifi.lmu.de/update/sde/
http://svn.pst.ifi.lmu.de/update/sde/

Service Development Environment (SDE) 10/2010

= Software Updates and Add-ons o (& [
Installed Software| Awvailable Software

type filter text - Install...

Mame Version

&[] %] Ganymede Update Site
4 %] http://svn.pst.ifilmu.de/update/sct/
a [V]000 Uncategorized

Properties

Lt Graphical Orchestration Feature 4.0.0 Add Site
Lt SDE Core Feature 4.0.0 —
L SDE Dev Feature 4.0.0

Manage Sites...
&[] %] The Eclipse Project Updates

Refresh

dq T 3

Show only the latest versions of available software

[T Include itemns that have already been installed

Open the 'Automatic Updates' preference page to set up an automatic update schedule.

Fmy
@ Cloze
Il

Figure 3: Update Sites in Eclipse

Now select Install.... After a while, the following dialog is shown:

2 Install 4 S0l » . - | 0
Install
Review and confirm that the checked items will be installed. \‘E)l_
MName Version
{[¥] 4= Graphical Orchestration Feature 4,00
L% SDE Core Feature 4.0.0
L+ SDE Dev Feature 400

Size: 12.518 KB
Detailz

»

4

@ < Back Next > Ensh

Figure 4: Finishing installation

Service Development Environment (SDE) 10/2010

You will be presented with more dialogs for accepting the license terms, agreeing to installing unsigned
features, and finally restarting the workbench. Simply follow the steps until the workbench has rebooted.

Service Development Environment (SDE) 10/2010

3 User Guide

First and foremost, the Service Development Environment is an IDE extension to be used by developers for
creating, analyzing, and deploying Service-Oriented Software Systems by providing access to tools. This user
guide explains the meta functionality provided by the Development Environment core itself, and also contains
examples for using installed tools.

3.1 Introduction

The Service Development Environment provides one new perspective, two new views, and one editor to the
Eclipse platform. In addition, the manual orchestrator provided with the core (called the SDE Shell) provides
an additional view and a launcher for executing Shell scripts; the graphical orchestration provides another
editor and toolbar for creating graphical orchestrations.

Having installed the Development Environment core as outlined in the previous section, you can select the
newly provided SDE perspective to display the contributed views. To do this, open the perspective using the
Window menu:

ect Run | Window | Help

- @ Mew Window - -
p; Mew Editor
Open Perspective » #} Debug
Show View 3 éy Java
]

. . «7 Java Browsin
Custormize Perspective... e 9

Save Perspective As... Other...

Reset Perspective
Close Perspective

Close All Perspectives

Mavigation »
Working Sets 2
Preferences...

Figure 5: Opening the SDE perspective, take 1

In the following dialog, select the SDE perspective:

Service Development Environment (SDE)

10/2010

= DOpen Perspective

[S5c)

Emcvs Repository Exploring
ﬁDebug

& Java (default)

S_JJa\ra Browsing

TgJJa\ra Type Hierarchy

== Plug-in Development
I-_\DRESCILI[CE
Sensotia;
B SV Repository Exploring
£ Team Synchronizing

0K l [Cancel

Figure 6: Opening the SDE perspective, take 2

Once opened, the perspective provides you with access to the complete functionality of the Service

Development Environment.

3.2 SDE Perspective

In its initial form, the Service Development Environment perspective has the following layout. Note that in the
following screenshot, some tools have already been installed by using other update sites available on the SDE

web site.
= Sensoria - Eclipse SDK =RACE X
File Edit MNavigate Search Project Run Window Help
5~ Q- B oD (5 (2 Sensoria|
Sensoria Browser &2 =0 = 8| # Sensoria Blackboard 2 =0
4 e Analysis

a % Model Checker
=5, SPIN Model Checker
S, UPPAAL VerifyTA Model Checker
a ' Sensoria
<, Sensoria Core Basic Functions
4 ' Transformation
%, Huge Model Transformator

Sensoria»

e

£ Sensoria Shell 22

‘Welcome to the Sensoria Scripting Shell
Please type help() for more information.

Figure 7: SDE perspective

10

Service Development Environment (SDE) 10/2010

Three views are visible:

e On the left-hand side, the SDE Browser is displayed. It contains a categorized listing of all tools
which are currently available in this particular instance of the Development Environment.

e On the right-hand side, the SDE Blackboard is displayed. The blackboard is used to store Java object
values in-between service invocations when using the manual generic Ul to access tool functions.

e At the bottom, the SDE Shell is displayed. As pointed out above, the Shell is a manual orchestrator
which can be used to employ JavaScript to call tool functions.

Double-clicking on a tool in the SDE Browser displays more information about the tool, for example the
functions of the tool Hugo/RT.

= Sensoria - Hugo Model Transformator - Eclipse SDK =NACIEE X
File Edit Mavigate Search Project Run Window Help
D-EH2ia-ifif-F e o- s (T Semare)
Sensoria Browser 1 = B|| # Huge Medel Transformater 3 = B[# sensoria Blackboard &3 =B
% Analysis H -
ugo Model Transformator
= Model Checker 9
<5 SPIN Model Checker Info
= UPPAAL VerifyTA Model Checker Basic information about this tool
& Sensoria) I de.Imu.ifi.pst hugart HugaRTService L
<, Sensoria Core Basic Functions =
_ . Name: Huge Model Transformator
t- Transformation
4, Hugo Model Transformator Description: This is the Huge Model Transformator
Functions
Available functions
* Model uteXmiToUmlIModel(String model) throws MadelException
Transforms an XMI- or UTE-based UML State Machine model into the Hugo/RT UML model
s SPINModel umliToSpin{Model model, Collaboration collaboration, Interaction interaction)
Transforms a Hugo/RT UML State Machine Model inte Promela input for SPIN. Collaboration and
interaction are optional.
s UPPAALModel umiToUPPAAL(Model model, Collaboration collaboration, Interaction interaction)
Transforms a Hugo/RT UML State Machine Model into TA/Q input for UPPAAL. Collaboration and
. imtaractinn are antinnal - :
Tool Info
Sensoria Shell 1 =B
Welcome to the Sensoria Scripting Shell
Please type help() for more information.
Sensoria
=

Ieigure 8: Hugo/RT

Besides some general information about the tool in the upper section, all available functions of the tool are
listed in the functions section. All functions may be directly invoked using the generic wizard Ul by selecting
the appropriate links. This is detailed in the following sections.

Besides functions, a tool may also provide options. Options are necessary for example if the tool is actually a
wrapper for some external tool like a Web services, which is installed at some particular URL. If available,
options are displayed in another section beneath the functions section.

3.3 Using the Generic Wizard Ul and the Blackboard

As pointed out in chapter 2, there are various ways for invoking tool functions. One way is using the generic
wizard Ul. This Ul allows calling arbitrary functions of arbitrary tools, providing input to those functions from
files, strings, or from the blackboard, and posting of the result of the invocation on the blackboard as well.

For example, consider the function utexmiToum1Model () of the Hugo/RT tool:

Model uteXmiToUmlModel (String) throws ModelException

11

Service Development Environment (SDE) 10/2010

This function transforms an XMI- or UTE-based UML State Machine model into a Hugo/RT UML model. The
model is returned as a Java object of class Mode1; the function requires the UTE or XML specification to be

givenasa string.
Invoking the generic wizard on this function yields the following dialog:

r b |
2 Invoke Function =RAC X
Invoke a tool function
This wizard page allows you to invoke a tool function, Please select parameter values,
uteXmiTolmiMaodel()
Transforms an XMI- or UTE-based UML 5State Machine model into the Hugo/RT UML model
The result of the function call (of type Model - An UTE model) will be posted to the blackboard.
Parameters of function call
Name Expected Type Selected Value Description Change
: model java.lang.String null A model in XMI or UTE format ;
@ [Finish l l Cancel
(.

Figure 9: Invoking a function using the generic wizard Ul

There is one parameter to be provided. By selecting the parameter and clicking Change, another dialog pops up
which allows choosing a value for the parameter.

In this dialog, you have three choices for selecting a parameter value:
e You can simply provide text in a text field. This is only possible for String-typed parameters.
e You can select a value from the blackboard. This is possible for all kinds of parameter types.
e You can load the input for the parameter from a file.

In this particular example, the UTE or XMI model will probably be loaded from a file, so the dialog is used to
select a file in the workspace. As the expected type is a String, we will select “Add contents of file as String”.

12

Service Development Environment (SDE) 10/2010

r |
£ Parameter Value Iﬁ

Select a value for parameter type class java.lang.5tring

Frorn string | From blackboard | From file |

Select a file:

Browse...

Parameter Type

() Add as a Java file object

() Add as an Eclipse resource object
" Add as workspace-relative path
~ Add as absolute file system path

(@ iAdd contents of file as a String;

@ Please choose a file,

Figure 10: Choosing a file as a parameter

After executing a function, the result is either opened in the Ul (for example, in an editor or a separate view), or
posted on the blackboard for further use.

In this example, the result is shown and posted to the blackboard.

13

Service Development Environment (SDE) 10/2010

- -
= S
- Success

Success

The operation succeeded. An object with type class uml.Model has been posted to the blackboard.

model ATM { -
properties {
networkCapacity = 2;
centralMetwork = false;
networkDelay = 10;
externalQueueCapacity = 5;
internal QueueCapacity = 2;
deferredQueueCapacity = 2;
intMin = -32768;
intMax = 32767;
mutex = false;
smileMachine = false;
phaseBased = false;
fixedOrderRegions = false;
fixed OrderTransitionFiring = false;
}

class Bank {
signature {
attr atrm ; ATM: -

b

Figure 11: A successful call

As can be seen in the following figure, objects on the blackboard are sorted by providing tool. An object is
shown with its name and its class. With tools, objects are sorted by date.

A Sensoria Blackboard i3 = B8

4 {75 Huge Moedel Transformator
= ATM (Model)

Figure 12: An object on the blackboard

When invoking another function which takes an um1.Model as input, this object can now be readily retrieved
from the blackboard. The generic invocation wizard also allows more generic access to Java objects by
providing a Bean view, i.e. allowing not only the blackboard objects themselves to be used as parameters but
also objects returned by invoking zero-argument methods on these objects. The following screenshot shows an
example of selecting such a method.

14

Service Development Environment (SDE) 10/2010

r |
£ Parameter Value lﬁ

Select a value for parameter type class uml.Model

From blackboard | From file

) Exact type only () Arrays 8 Iterables @ All objects (Bean view)

Board object:

a4 HE Hugo Medel Transformator -
4 [E ATM (Model)
‘=1 uml.DataType getBoolean()
& java.lang.5tring getMame()
=1 java.util.List getClasses()
‘= uml.properties.Properties getProperties()
& uml.DataType getlnteger()
= java.util.5et getCollaborations()
& java.util.5et getDataTypes()
=1 java.util.5et getSignals()
= uml.DataType getClock()
‘= uml.DataType getVoid() 2

m

Java.util.5et getCollaborations()

[ok || Cancel

Figure 13: Selecting a bean from the blackboard

To summarize, the generic wizard invocation Ul along with the blackboard can be used to invoke tool functions
with, or without a Ul of their own.

3.4 Using the Orchestration Functionality

One of the main aims of the Development Environment is enabling orchestration of tools. As tools can be
discovered using the SDE core and their interface functions invoked, orchestration can be provided by arbitrary
tools on top of this service layer. The SDE provides three options for orchestrating tools:

e The SDE Shell provided within the core is a manual orchestrator which provides such an orchestration
mechanism as a UNIX-like Shell with the additional ability to store, load, and execute scripts.

e SDE Scripts are written in JavaScript and are executed without parameterization. In order to create
new tools, SDE Tool Scripts may be written which contain JavaScript functions. After converting
them to tools, they can be used as any other tool through the tool browser.

e A graphical editor is provided to write Graphical Orchestrations as data-driven activity diagrams.
Such orchestrations are again tools themselves.

In all orchestrations, the SDE core can be accessed directly; thus any tool can be retrieved from the core and its
interface functions executed.

3.4.1 Orchestrating with the Shell
The SDE Shell is a manual orchestrator, i.e. it is intended for working with direct user input like a UNIX-like

shell. A help function is provided which lists some of the available functionality. The following figure shows
the SDE Shell with the help function invoked.

15

Service Development Environment (SDE) 10/2010

Sensoria Shell % =8

Welcome to the Sensoria Scripting Shell -
Please type help() for more information.

Sensoria> help()

Welcome to the Sensoria Shell,

To retrieve a tool:

Use object sCore (the Sensoria Corel:
» sCorefindTool(5tring toolld): Returns the tool, if found.
> sCorefindToolByMame(String toclMame): Returns the tool, if found.

Once a tool is loaded:

Use the tool object [tool] (The tool itself)
» [tool].getFunctions(): Returns list of all functions
> [tool].getServicelnterface(): Returns the actual service object

On a service object, you may directly invoke any of the functions
the tool provides.

To use the blackboard:

Use object sCore (the Sensoria Core):
» sCore.postToBoard(Object object): Posts an object to the board.
» sCoreretrieveFromBoardByToolld(String toolld): Returns a list of objects posted by this tool.

Mote: Syntax Completion (TAB) is available.

Sensorias

Figure 14: The SDE Shell

As can be seen, the SDE core is provided through the object sCore which is always available in SDE Scripts.
The interface of the core can also be viewed in the tool browser — it is provided as the tool with the name SDE
Core Functions.

The shell supports a history (up arrow/down arrow) and basic syntax completion with the TAB key. As an
example for using the Shell, have a look at the following script which uses the two tools Hugo and SPIN to
model-check an UTE-based model and outputting the result. In the shell, each line must be entered separately.

| runSPIMNSession.sscript 22 = B8

hugo= sCore.findToolByMame ("Hugo Model Transformator™) .getServiceInterface():;

uteFile= =Core.loadWS5FileIntoString ("c: /users/phil/code/rtws,/Te=st,//atm.utae™)
uml Systemn= hugo.uteXmiToUmlModel (uteFile) ;

promela= hugo.umlToSpin (umlSystem, null, nuall);

spin= sCore.findToolByName ("5PIN Model Checker™) .getServiceInterfacel():

res= spin.checkWithS5PIN (promela.getPromelaCode (),
promela.getSpecificationCode (), null) ;

print (res.getResult ()) !

Figure 15: An SDE Script

3.4.2 Using SDE Scripts

Figure 15 has already shown script code within the Eclipse text editor. The recommended file ending for such
scripts is .sscript for SDE Script. To write such a script from scratch, select File > New > Other... in the
Eclipse main menu, and then File under the General section. A dialog appears which allows you to choose a
file name, which should end with .sscript.

Once you have written and saved the script, you can invoke it by right-clicking the file in the Navigator or
Package Explorer view, and selecting Run As > SDE Shell Script. Note that in both the Navigator and
Package Explorer views, every .sscript file is annotated with a small green run button to show it is
executable as a SDE script.

16

Service Development Environment (SDE) 10/2010

Refresh
] = S—
= = SomeProject 1 Sensoria Shell Script
i Debug As .
= bin Team ,| © Open Run Dialog. .
= sIC 4
_classpath Compare With »
_project Replace With »
5| atm.ute

Froperties

& someScripes

Figure 16: Running an SDE Shell script

The most powerful way of creating orchestrations within the SDE Development is writing Tool Scripts. These
scripts are again based on JavaScript, but employ functions and certain comments for providing functionality,
which allows the SDE to convert them to standard tools.

srme.sscript &2 =8

f** -

*

SBEMC Performance Analysis ScripIt

=
=
* @id srmcorchestration

* @name SRMC Performance Analysis Script

*# @description Buns the S5EMC analysis on an UHML model.
=
=

Bfunction runfnalysis Runs the analysis
* @param runfnalysis umlFile input UML file as a Java file.
* @returns runfnalysis annotated UML file

function runfnalysis(umlFile) {
srmcunl=sCore.findToolByName ("SRMC/UML Bridge™) .getServiceInterface():
uml=srmecumnl . loadModel (umlFile) ;

interaction=srmcuml.extractFirstInteraction (uml) ;
node=srmcuml . transform(interaction) ;

srme==sCore.findToolEByName ("Senzoria Reference Markovian Calculus (SRMC) ™) .getSerx
markovchain=srmc.getMarkovChain (node) ;
distribution=srmc.getS3teadyS5tateProbabilityDistribution (markovchain) ;
throughput=srmc.getThroughput (markowvchain) »

/{/back-annotation
srmcuml . reflect (umlFile, interaction, throughput) 7

return umlFile;

4| 1 3

Figure 17: An SDE Tool Script

Figure 17 shows an example of a SDE Tool Script containing one function called runAnalysis, which takes
one parameter named umlFile. The function orchestrates two tools — the SRMC/UML bridge and the
SRMC tool itself — to provide some functionality. In the comment at the top of the function, various tags are

17

Service Development Environment (SDE) 10/2010

used to provide descriptions to the content of the file. Only the id and name of the tool are required, however it
is recommended to provide all of these tags to make the tool more usable.

e The@id, @name, and @description tags are used to describe the tool created from the script.
e Per function, use
o Qfunction [functionName] [description] toadd a description to a function

o @param [functionName] [paramName] [description] toadd a description to
a parameter of the function. Note that you must add these @param links in the same order as
the parameters in the function.

o (Qreturns [functionName] [description] to add a description of the return
value of the function.

After a Tool Script has been written, right-click on the file in the Navigator or Package Explorer and select
SDE: Add Script as Tool.... The script will be converted to Java and shown as a new tool in the
browser, as can be seen from Figure 18.

/4 Sensoria Browser 1 = B || B srmesscript 4 SRMC Performance Analysis Script &3 =g
= Analysis SRMC P . -
erformance Analysis Script
t= Model Checker Yy P
2= Scripts Info
=, SRMC Performance Analysis Script Basic information about this tool
-5 i
& Sensoria . . . Id: srmcorchestration
=L, Sensoria Core Basic Functions .)
_ . Mare: SRMC Performance Analysis Script
ta- Transformation
<& Huga Madel Transformator Description: Runs the SRMC analysis on an UML model.
Functions

Available functions

® Object runfAnalysisiObject umlFilef

Runs the analysis

Tool Info

Figure 18: A tool converted from JavaScript

Note that all return types and parameters are assumed to be Objects.

A link to the original script source will be kept in the Service Development Environment and the tool will be
re-created upon start-up. If the original file is missing or the workspace has changed, the script will be silently
ignored.

3.4.3 Graphical Orchestration

The other alternative to writing orchestrations is to employ the graphical activity diagram editor included in the
SDE. To create a graphical orchestration, select New > Other > SDE SDE Graphical Orchestration.

18

Service Development Environment (SDE) 10/2010

P e L |

Select a wizard —

Creates a new Graphical Orchestration

Wizards:
type filter text

& Class

& Interface

2% Java Project

Java Project from Existing Ant Buildfile
I Plug-in Project

- = General
- = CVS
» [= Java
- [= Plug-in Development
4 [= Sensoria Development Environment
(:5 Sensoria SDE Graphical Orchestration
- = User Assistance

)
[==]
=
&
W

Finish Cancel

e

Figure 19: Creating a graphical orchestration
In the following dialogs, select a name for the two files which are created:
e The first file contains the diagram, and has the extension .god (for graphical orchestration diagram)
e The second file contains the orchestration itself, and has the extension .go (for graphical orchestration)

It is recommended to pick the same name for both files (excluding extension). Once the files have been created,
the editor in Figure 20 is shown.

The canvas of the editor corresponds to a new tool to be created in the SDE. As each tool can contain multiple
functions, a function needs to be added first. To do so, click on Function in the palette on the right hand side,
and click onto the canvas to create a new function. Name it appropriately, for example
checkWithWSEngineer (Figure 21).

Now, tool functions can be dragged into the new function as appropriate from the palette on the right-hand side,
which contains all invokeable function of all installed tools. Additionally, the following meta tools may be
used:

e Use Link to model data flow from an output of a function to the input of another
e Use Input Pin to add an input parameter to a function
e Use Output Pin to add an output parameter to a function

An example of a complete script is shown in Figure 22.

Before you can execute the function, you also need to name the tool. For this, right-click on the canvas and
select properties. The properties view shows up, you need to fill in both the name and id (Figure 23).

Finally, to execute a function, simply click on the green play button in the upper right corner of a function.
You may also use the SDE menu to convert the whole tool to a SDE tool.

19

Service Development Environment (SDE) 10/2010

- Sensoria - Scripts/mample.ged - Eclipse SDK % = = & & - s ' . » e ¥ b =|E
File Edit Diagram Navigate Search Project Run Sensoria Window Help

B8 2 (& Sensoria]
|Tah0ma vlg v|h' Pl A~ By gy o | BByl i| =

Qv PR d B4 3] w 5| v k0 (oow O v
_ & eamplegod 13

4
B

= g
+ | 5 Palette b
eaD- -«
o Function
A Link
—+alnput Pin

=+ Clutput Pin

= Dino Broker

= DinoModes

(= LTSA

[= LTSA MsC

[= LTSA UML

(= MDD4SOA Int...
[~ Modes

= PEPA Integrati...
(= RSA Integratio...
(= Remote servic...
[~ Sensoria Core ...

~ |2 Sensoria Core ..

I 4 ' [Sensoria Refer... ~
\L

- —_

Figure 20: Graphical Orchestration editor

—— et T " —— T coes
= Sensoria - Scripts/example.god - Eclipse SDK "’ . -~ -
File Edit Diagram MNavigate Search Project Run Sensoria Window Help
CrE S 2 (& Sensoria]
|Tah0ma vlg v|h' Pl A~ By gy o | BByl i| =

Qv & 1K 43] w | v %0 (oow O v

4
B

= &7
+ | 5 Palette b
heeao- -
o Function
A Link

—+aInput Pin

g checkWithWSEngineer

=+ Clutput Pin

= Dino Broker

[~ DinoModes

(= LTSA

[= LTSA MsC

[= LTSA UML

= MDD4SOA Int...
[~ Modes

= PEPA Integrati...
= RSA Integratio...
\ y, (= Remote servic...
[~ Sensoria Core ...

m

~ |z 5ensoria Core ...
1 ¢ (= Sensoria Refer... ™

Figure 21: Creating a function

20

Service Development Environment (SDE)

10/2010

- Pen .

= Sensoria - Scripts/wse.god - Eclipse SDK - P 3B

-:@g

Eile
-
Tahoma 9 B { | A Hr

Q- IR R R IR

Edit Diagram MNavigate 5earch Project Run Sensoria Window Help

2 20

v | iR e

S g=R

Fef [Sensorie |

& wsegod I

-

65} checkWithWSE

=
Vs
T

(8] celectActivitiesFromRSA umlActivities:List | transformToBPEL

list:List

list:List

bpelAndWSDLDescriptions:List

@) convertToFSP list:List | () selectBPELWSDLPairs

orchestrations: List

string:String

eE

| »

m

<& Palette

FEEEE
o Function
/" Link
—»a Input Pin

=+ Clutput Pin

= Dino Broker

= DinoModes

(= LTSA

m

(= LTSA MSC

= LTSA UML

(= MDD450A Int...

] [~ Modes

= PEPA Integrati...

(= RSA Integratio...
(= Remote servic...
[~ Sensoria Core ...
[~ Sensoria Core ...
[~ Sensoria Refer...

Figure 22: A complete function

= Sensoria - Scriptsfwse.god - Eclipse SDK A e - s e @Eg
File Edit Diagram MNavigate Search Project Run Sensoria Window Help
[3~ 15 [Sensoria
Telame 9 B |v By v v—>v|_'|fg;\:€vagv§:-oov|_' =R
Q- 4~ i ol I~ 5] ~%¢5 & - -
$ wsegod I =g
=
- (i5} check\WithWSE 01 5| & Palette v
g5} checkWitl
% U heaaD- -
o Function =
(8] celectActivitiesFromRSA umlActivities:List | transformToBPEL /" Link
—+aInput Pin
list:List =+ Clutput Pin
Dino Brok
list:List - |ESlnelinls"
] T} + [~ DinoModes -
[Properties &3 :=:€> =0

i: Orchestration checkWithWSE
I

Core Property Value
Rulers & Grid Description -
- Id 1= WSECheck
ppearance Name = checkWithWSE
kd

Figure 23: Tool Name and ID

21

Service Development Environment (SDE) 10/2010

3.5 Custom Tool Uls
As mentioned before, each SDE tool can also provide its own custom Ul to the Eclipse platform. From within
this Ul, the SDE tool may be used as such, but this is not necessary.

As an example for such an Ul, the Hugo/RT tool has been equipped with a wizard for model checking or
transforming UTE- or XMI files. The wizard can be invoked by right-clicking .ute or .xml files in the
Navigator or Package Explorer views. A wizard opens, which looks as follows.

= Hugo/RT Transformation [Elﬂld_hj

Select Checking Options

Please select the options for checking this model,

Select execution mode

(") Transformaticn

Select model checker

@ Uppaal () Spin

Select cutput format

2) Timed Autornata (UPPAAL) Promela (SPIN)
Specification for KIV Java Code
System of Smile machines UTE code
GraphViz Dot Files

Select options

Collaboration: Test Browse...
Interaction: Browse...

Assertion: Browse...

Select an cutput directory

| OQutput Directory: /SensoriaTest Browse...
Output Prefic atm
@ Finish] [Cancel

b

Figure 24: The Hugo/RT wizard

Tools are not limited in their usage of Eclipse Ul elements and may provide whatever is needed in addition to
allowing access to their core functionality via the Service Development Environment.

22

Service Development Environment (SDE) 10/2010

4 Developers Guide

The Development Environment contains all the relevant functionality to enable the vision described in the
introduction. The architecture has been implemented as laid out in the first chapter. This chapter will provide
some more technical insights into this implementation and offer a guide for developing new tools for this
platform.

4.1 Development Environment Architecture

The Service Development Environment — as provided by the core feature from the update site — has been
implemented as two OSGi bundles — the core itself, which is only based on Equinox, and the Ul, which is
based on Eclipse.

The following figure shows how the various components of the Service Development Environment — as well as
some examples — fit together.

<<Byndiess
eu.sensoria-ist.casetool.core.ui

Visual Views
Taool Browser
Function Brorasar
Blackboand Browser
Funetian Wizard

Inpust
Sensoria Shel

<<Bunale=>
de. Imu.ifi.pst hugo_ui

Visual Views
HugoRT wizard

Input
Run Hugo Action

Ly

-D.USE—

A

Lol

de.Imu.ifi.pst.hugort

=i

¢

Provided Toals
Huga/RT

“\\

<<Bundle>>

eu.sensoria-ist.casetool.core

Extension Points
Tool

APl Functions
findTaciBylC{)
find TooEyMameal)

getFmomBlackboard;...)
postToBlackbaard) ... |

APl Madal
Toal

BoardDals

&

i
o
-

<<Hundia=>
com.uppaal verifyta

Provided Tools
UFF Ak

<<Bundias==
com.spinroot.spin

Bq\-a.\e‘ / Provided Tools
; Spir
agisier

<<Bndle==
el 5ensoria-
ist.casetool.core.shell

Prawidad Tools

Sensona Shel

Figure 25: Development Environment Technical Architecture

In the lower left corner, the SDE core bundle is displayed in orange. It provides two externally accessible
interfaces:

e An Equinox extension point (on the right-hand side), which can be used for tool registration.

e A Java API (on the left hand side), which can be used by orchestrators, discoverers, and Ul to access
the registered tools.

In the upper left corner, the SDE Ul bundle is displayed in blue. It provides several visual views and uses the
API of the core to retrieve tools and their functionality as well as blackboard resources.

23

Service Development Environment (SDE)

10/2010

On the right-hand side, four tools are displayed (Hugo/RT, UPPAAL, SPIN, and the Shell); one of which has

an additional Ul bundle available (Hugo).

The complete source for all these bundles and plug-ins is available via Subversion. The Subversion URL is

http://svn.pst.ifi.lmu.de/svn/sde/

4.1.1 Core Extension Point

The next figure shows an example of a tool registration by using the Equinox extension point of the core. In the
example, the SPIN bundle is registered with the SDE core. This will be explained in more detail in the

following sections.

11t com.spinroot.spin 2

-7 version="1.0" encoding="UTF-8"2>

se wersion="3.2"7%

<plugins>
<extension
point="eu.sensoria_ ist.casetool.core.tool">
<tool

id="com.spinroot.spin.ISPINService™

name="5PIN Model Checker"

—ng

category="Analy:

description="T S5FIN Model Checker"”
class="com.spinroot.spin.RemoteSpinRunner™>
<option

name="SpinWebServiceURL"

</option>
<function
name="checkWithSPIN"

returns="com. spinroot.spin.SPINResult”
returnsDescription="4 SpinResult w

<parameter
name="promelaFileContent™
description="Promela File Contents"
type="java.lang.5tring">
</parameter>
<parameter
name="1tlFileContent™
descriptiomns
type="java.lang.5tring">
</parameter>
<parameter
name="options"
description="Cptions"

ile Contents"

type="java.lang.5tring[]">
</parameter>
</function>
</tool>
</extension>
</plugin>

description="Wrapping tool for the S5PIN Model
defaultValue="http://localhost:8080/axis/ser

Checker. Please note that a 5PIN Web Service must bel

ices/SpinService™ >

h contains the result, trace, and log."
description="Checks a Promela and LTL file according to Spin properties,

returns a trace in a Stri”

4 | 1

Overview | Dependencies | Runtime | Extensions | Extension Points | Build | MANIFEST.MF | pluginxml | build.properties

Figure 26: Registering a tool

4.1.2 Core API

Besides the extension point for registering tools, the core also provides API to orchestrators, discoverers, and
its own Ul. The most important API functions are listed in the next figure.

24

http://svn.pst.ifi.lmu.de/svn/sde/

Service Development Environment (SDE) 10/2010

public interface ISensoriaCore {
public IToclStore getTools();
public IBlackboard getBlackboard();
}
public interface IToolStore {
public Set<Tool> getTools();
public ToolElement getRoot():;
public Tool findToolById(String toollID);
public Tool findToolByName (String toolName) ;
}
public interface ITocol |
public String getId();
public String getDescription();
public String[] getCategory():;

public Object getServiceInterface():

The functions displayed allow for retrieving tools, which can then be used to get the service interface for
invoking functions.

4.2 Creating Tools
Creating new tools or adapting existing tools for use in the Service Development Environment requires the
following three steps:

e Creating or reusing an OSGi bundle.

e Creating a tool class/interface and functions within this bundle, which implement the tool
functionality.

e Registering the tool with the Service Development Environment core.

Depending on the type of tool to be implemented, an OSGi bundle may already be available or needs to be
created from scratch:

e If the tool to be integrated is an Eclipse plug-in (starting from version 3.0), it is already implemented
as an OSGi bundle.

e If the tool is written in Java, the code can probably be used from within an OSGi bundle or Eclipse
plug-in as well, either in source or as a .jar library.

e If the tool is written in a native language or provided as a Web service, the recommended way is to
create a wrapping OSGi bundle which forwards all functionality.

Publishing a tool to the Service Development Environment requires three steps:
e adding the SDE core as a dependency to the tool bundle,

e writing some XML to register the tool, and the provided functions of the tool, with the Service
Development Environment core (the XML can be generated from Java 5 annotations, see below),

25

Service Development Environment (SDE) 10/2010

e exporting the necessary packages and libraries so the core is able to find the implementation code.

Additionally, it is of course possible to contribute to the Eclipse Ul as appropriate.

4.2.1 Walkthrough for an Example Tool

Before writing a new tool for the Service Development Environment, you need to have the Development
Environment installed, which includes the development package. One installed, start the Eclipse workbench.

Normally, a tool should be split into at least two Eclipse projects — one OSGi bundle for the core functionality
which exposes the functions on an OSGi level, and one for the Eclipse Ul (if necessary). However, some
existing tools may already be provided as bundles, so the Service Development Environment parts can either be
added to those bundles or extracted into separate bundles to allow the tools to work without the Development
Environment present. Also, there might be tools which are so dependent on Eclipse that an OSGi component is
not possible. In this simple example, we will also create a bundle as an Eclipse plug-in project for simplicity.

4.2.1.1 First Step: Creating the project
To create a new plug-in project, select “File > New > Project...” in the Eclipse main menu. In the wizard
which follows, select Plug-In project.

Choose a hame for the project (it is recommended to use a fully qualified domain name in reverse order, i.e.
de.lmu.ifi.pst.test); click Next, then Finish.

= New Plug-in Project = B
Plug-in Content o 1 l .
Enter the data required to generate the plug-in.

Plug-in Properties

Plug-in ID: de.lmu.ifi.pst.test

Plug-in Version: 1.0.0

Plug-in Mame: Test Plug-in

Plug-in Provider:

Classpath:

Plug-in Options

| Generate an activator, a Java class that controls the plug-in's life cycle
Activator: de.lmu.ifi.pst.test. Activator

| This plug-in will make contributions to the Ul

Rich Client Application

Would you like to create a rich client application? Yes @ No

@ <Back || Met> || Finsh || Cancel

A

Figure 27: Creating a new plug-in project

Once created, the project will show up in the package explorer.

26

Service Development Environment (SDE) 10/2010

4.2.1.2 Second Step: Adding the SDE core as a Dependency

The plug-in contains a MANTFEST . MF file in the META-INF folder which contains the OSGi settings for this
plug-in. Double-clicking on the MANIFEST.MF file opens the PDE (Plugin Development Environment) editor
for this bundle.

Within the PDE editor, there are several pages for the various options. Right now, we are interested in the
Dependency page. On this page, select Add... to add a new dependency; from the list presented, select the
Service Development Environment core eu.sensoria-ist.casetool.core.

- . -
o Plug-in Selecticn l.:. B X

Select a Plug-in:

ELL

=l eu.sensoria_ist.casetool.core (4.0.0)

== eu.sensoria_ist.casetool.core.compile (4.0.0)
=J= eu.sensoria_ist.casetool.dev (4.0.0)

== eu,sensoria_ist.casetool.remoteaccess (4.0.0)
== eu,sensoria_ist.casetool.ui (4.0.0)

=} eu.sensoria_ist.casetool.ui.go (4.0.0)

=J eu.sensoria_ist.casetool.ui.go.diagram (4.0.0)
=l eu.sensoria_ist.casetool.ui.go.edit (4.0.0]

7 (o]'4] ’ Cancel

e

Figure 28: Adding the dependency to the core

Once the dependency has been added, save the MANIFEST . MF file.

4.2.1.3 Third Step: Creating a Tool Class and/or Interface

Each tool corresponds to exactly one implementing class with an arbitrary number of functions (of course,
there may be more than one tool per plug-in, if necessary). Of the methods of the class, all or only a part can be

published for the Development Environment. It is recommended to create an interface for these methods to
ensure that:

1. All required methods are indeed published.
2. All methods are public.

The use of an interface is also practical when using Java annotations for describing the tool interface (see next
step). The class implementing the methods or functions of the tool must fulfil the following requirements:

a) it must have a no-argument default constructor for instantiation.
b) it must implement one of the two SDE core base interfaces:
a. eu.sensoria-ist.casetool.ISensoriaTool (for normal tools — the interface is

empty)
27

Service Development Environment (SDE) 10/2010

D. eu.sensoria-ist.casetool.ISensoriaConfigurableTool (for tools with options,
see advanced topics)

c) (Optional) The interface eu.sensoria-ist.casetool.ISensoriaModelHandler may be
implemented additionally. This interface allows tools to add functionality for handling their model objects in the
Ul. This will be detailed later.

Each tool class will be instantiated only once by the Development Environment and then used for all
consequent function calls.

Once a tool class and/or interface have been created, the tool can be published.

4.2.1.4 Fourth Step: Publishing the Tool

The tool bundle and the implementing class must be registered with the Service Development Environment in
order for the tool to be listed in the core API and displayed in the core Ul. Publishing a tool is done by creating

an Equinox extension similar to registering other extensions in Eclipse, i.e. by registering functionality at an
extension point.

Such an extension is either written by hand in XML inside the plugin.xm1 file, or added via the PDE wizard,
which in turn writes the XML. However, with the Development Environment Development package installed,
there is a third way (see below).

While writing the XML by hand is not recommended, the PDE wizard can be reached by opening the
MANIFEST.MF file again, selecting the Extension tab, clicking Add..., and selecting the appropriate extension
point to be extended.

41t *de.dmu.ifipsttest £2

. Extensions

All Extensions 1A E

Define extensions for this plug-in in the following section,

type filter text

= New Extension =HACT| X

Extension Point Selection

il
Create a new 5ensoria Tool extension. ‘j

Extension Points | Extension Wizards

Extenszion Point filter:

= eu.sensoria_ist.casetool.coretool -
=il org.eclipse.core.contenttype.content Types

m

=il org.eclipse.core.runtime.adapters

Figure 29: Adding a new extension, 1

The extension point for adding new Service Development Environment tools has the ID
eu.sensora_ist.casetool.core.tool.Once added, an extension is displayed as follows:

28

Service Development Environment (SDE) 10/2010

7+ deldmu.ifi.pst.test 57 =0
% Extensions @
All Extensions laz = Extension Element Details
Define extensions for this plug-in in the following section. Set the properties of "tool”. Required fields are dencted by ",
type filter text id*: He.lmu.ifi.pst.test.tooll
2= eu,sensoria_ist.casetool.coretool Add... name™ de.mu.ifi.pst.testtooll
delmu.ifi.pst.test.tooll (tool) Edit category™ de.lmu.ifi.pst.test.tooll
class™ dedmu.ifi.pst.test.SenseriaTooll -m
Up
description™ delmu.ifi.pst.test.tooll
Down

Overview | Dependencies | Runtime | Extensions | Extension Peints | Build | MAMNIFEST.MF | build.properties | plugin.xml

Figure 30: Adding a new extension, 2

A new tool with the ID de.lmu.ifi.pst.test.tooll has been added automatically; its properties are
displayed on the right. The one function beneath it has been added by right-clicking the tool and selecting the
appropriate menu item to create new function.

All the properties of the tool and all of the functions must be provided in order to publish the tool and the
selected functions. Rather than doing this by hand, the development package of the Service Development
Environment can automatically create this information from Java source code and annotations. This is the
recommended way and explained in the following.

Open the Development Environment implementing class or interface created in the previous step in the Java
editor. For example, the interface might look like this:

[J] ITestTooljava &2 = O

package de.lmu.ifi.pst.test: i
!;nu.blic interface ITestTool {
public wvoid sayHello():

puoblic String personalGreeting(String name) ;

Figure 31: An interface for a tool

The interface may now be annotated as follows:

29

Service Development Environment (SDE) 10/2010

[TestTool java &2

package test;

import eu.sensoria ist.casetool.core.ext.SensoriaTool;

import eu.sensoria_ ist.casetool.core.ext.SensoriaToolFunction:

import eu.sensoria_ist.casetool.core.ext.SensoriaToolFunctionParameter;
import eu.sensoria_ist.casetool.core.ext.SensoriaToolFunctionReturns:

7]

@

SensoriaTlool (name= "Example test tool", description= "Cnly a test", categories= "Test, Example™)

public interface ITe=tTool {

@SensoriaToolFunction(description= "Says hello™)
puoblic woid sayHellol():

s (description= "Returns a persconalized greesting™)
public S5tring personalGreeting(

@SensoriaToolFunctionParameter (description= "Name of person to greet") String name) ;

Figure 32: Java annotations for an SDE tool

As can be seen, the annotations are added both to the interface itself and to every function. The tool interface is
annotated with three options:

A name for the tool. This should be human readable.

A description for the tool. This should be one sentence, at most two, which describe what this tool
does.

A category. Tools are categorized into a categorization tree which is built on-the-fly by the
Development Environment. A path in this tree is given here, separated by forward slashes; for
example Analysis/Model Checking. The SDE Tools Wiki features a list of predefined categories.

Every function is annotated with a description which should describe, in one or two sentences, what the
function does. Additionally, a description of the return parameter, and descriptions of each of the
parameters should be specified.

Once the annotation is complete, select the interface or class in the package explorer and right-click. A new
menu item named Convert to SDE tool shows up. Selecting this menu item yields the following dialog:

30

Service Development Environment (SDE) 10/2010

() XML Result = | B i
Please copy the text below and insert it into your pluginxml manifest.
<extension -
point="eu.sensoria_ist.casetocl.coretool ">
=tool

id="testITestTool"

name="Example test tool"

category="Mo Category”

description="0nly a test"

class="TODO Fill Me"=

<function
name="sayHella"
returns="void"
returnsDescription="{no description}”
description="5%ays hello"=

</function>

=function
name="personalGreeting”
returns="java.lang.5tring"
returnsDescription="Returns a personalized greeting’
description="5%ays hello with your name">»
<parameter o

m

Figure 33: XML for the plugin.xml

The generated XML code is displayed in the dialog and can now be copied and pasted directly into the
plugin.xml. Only one option still needs to be filled out: The actual implementation class is currently tagged
with “TODO Fill Me” in the code, as the action cannot infer the actual implementing class.

To paste the code into the plugin.xml,

1. Open the plugin.xml file from the package explorer (if it has not yet been created, select the
MANIFEST.MF file)

2. Inthe PDE editor which is opened, select the plugin.xml tab
3. Paste the code in-between the <plug-in> tags.

The following screen shot shows the result. Note that a class TestTool has been created in beforehand which
implements ITestTool.

31

Service Development Environment (SDE) 10/2010

<plugin>

<extension
polnt="eu.sensoria ist.casetool.core.tool">
<tool
id="test.ITestTool"™
name="Example test tool®

description="Cnly a test"”
class="te5t.testchl"> =
<category
name="Test"™ />
<category

name="Example" />
<function
name="szayHello"
returns="volid"
returnsDescription=" (no description)™
description="5S5ays hella™>
</function> =
<function

name="personalGreseting”
returns="java.lang.String"”
returnsDescription="Returns a personalized greeting”
description="5ays hello with vour name">»
<parameter
name="namee" i

4 b

Overview | Dependencies | Runtime | Extensions | Bxtension Points | Build | MANIFEST.MF | pluginaxml | build.properties

Figure 34: Finished tool definition

4.2.1.5 Fifth Step: Exporting Packages

The extension created in the last step points the Development Environment to the implementing class, which in
turn probably uses more classes from the plug-in as well as libraries. These classes and libraries must be
marked as available to other plug-ins if the Development Environment is to find them at runtime.

This can be done in the PDE editor as well. Selecting the Runtime tab yields the editor tab displayed in the
next figure.

On this tab,

e add all relevant (which are normally all available) packages defined in the plug-in as exported
packages in the list on the left.

e add all relevant (which are normally all available) jars used in the plug-in to be included on the
runtime classpath in the list on the bottom right.

32

Service Development Environment (SDE) 10/2010

Lt dedmu.ifipstest 73 =0
= Runtime @
Exported Packages Package Visibility (Eclipse 3.1 or later)
Enurmerate all the packages that this plug-in exposes to clients. All other When the runtime is in strict mode, the selected package is:
packages will be hidden from clients at all times. o .
visible te downstream plug-ins
B delmu.ifi.pst.test hidden from all plug-ins except:
Rermove Add...
Properties... Remove

Calculate Uses

m

Classpath
Specify the libraries and folders that constitute the plug-in
classpath. If unspecified, the classes and resources are
assumed to be at the root of the plug-in.

Remove
Up

Down

Total: 1 i

O’verview|Dependencies Runtime | Extensions | Extension Points|Bui|d|MANIFEST.MF pluginxml | build.properties

Figure 35: Runtime Tab

4.2.1.6 Final Step: Testing

Testing a plug-in or OSGi bundle requires starting a runtime workbench. To do this, open the Overview tab in
the PDE editor and select Launch an Eclipse application (on the right-hand side).

A new Eclipse instance is started. Open the SDE perspective, which should allow access to the newly created
tool:

33

Service Development Environment (SDE) 10/2010

= Sensoria - Example test tool - Eclipse SDK = |] |

File Edit Mavigate Search Project Run Window Help

o T T . e I
Sensoria Browser &3 5. Mavigater = B || # Example test toal 53 =08
Example test tool

B: Analysis

t: Model Checker Info
T Scripts Basic information about this tool

= SRMC Performance Analysis Script Id: de.lmu.ifi.pst.test.ITestTool
fa- Sensoria

Name: Example test tool

=i, Sensoria Core Basic Functions Description: Only a test

Ta- Test
=, Bxample test tool
t- Transformation Functions
5, Huge Model Transformator Available functions
* void sayHellof
Says hello

* String personal Greeting(String namel
Says hello with your name

Toaol Info

B

Figure 36: New tool installed

4.2.2 Adding Model Handling

The Service Development Environment contains an additional interface, ISensoriaModelHandler, which
can be implemented by tool providers to add advanced functionality for working with model objects used or
returned by functions of this tool. In particular, implementing this interface will allow:

e Displaying a name and description for model objects in the blackboard and within the generic wizard
Ul

e Automatically opening model objects in an editor or a custom tool Ul when it is returned from a
function, instead of simply posting it on the blackboard.

The interface, which must be implemented by the tool class defined in the extension definition, includes the
methods displayed in Fehler! Verweisquelle konnte nicht gefunden werden..

public interface ISensoriaModelHandler extends ISensoriaTool {
public List<Class<?>> getHandledModelCkbjectClasses ()
public String getLabel (Object modelObject);
public String getContent (Cbject modelOkject);

public boolean openInUI (Object modelObject);

Figure 37: ISensoriaModelHandler interface

The first method is used by the SDE core to determine which model objects will be handled by this tool. For
example, the Hugo/RT tool defines a model object with class uml .Model and uses it extensively in the tool
functions. Therefore, the tool returns a list which includes uml .Model here.

34

Service Development Environment (SDE) 10/2010

The second and third methods are called by the SDE core to retrieve a short label and a long complete String of
the contents of an object.

Finally, the third method is called when the use requests opening of a model object. The tool may return false
here if it cannot handle the given object.

Note that the classes String, File, and IFile are already handled by the SDE UI.
4.2.3 Advanced Topics
This section contains some more advanced topics related to tool creation. Additionally, a good starting point is

the source code of other tools, like Hugo/RT, SPIN, and UPPAAL. The source code is available via SVN; see
the SDE Tools Wiki for more information.

4.23.1 Options
As pointed out before, a tool may need options to be set by the user like the URL of a Web service or the
location of a local script to be executed.
To enable options in your tool, you need to follow two steps:
1. Declare the options on the tool by using Java annotations.
2. Implement the IsensoriaConfigurableTool interface in the tool class.

The code written for the first step might look like this:

@sensoriaTool (
name= "SPIN Model Checker",
description= "The SPIN Model Checker",
category= "Analysis/Model Checker")

@SensoriaToolOptions (
@SensoriaToolOption (
name= "SpinWebServiceURL",
description= "Wrapping tool for the SPIN Model Checker",
defaultvValue= "http://localhost:8080/axis/services/SpinService")
)

public interface ISPINService { ... }

Figure 38: Defining options as Java annotations

For the second step, the interface ISensoriaConfigurableTool must be implemented. This is necessary for
the Service Development Environment core to retrieve and set the options of this tool. A typical
implementation of the two methods of this interface might look like this:

private Map<String, String> fOpticnMap= new HashMap<String, String>();

public String getOption(String option) {
return fOptionMap.get (option):;
}

public void setOption(String option, String wvalue) {
foptionMap.put (option, wvalue);
}

Figure 39: Implementing ISensoriaConfigurableTool

4.2.3.2 Creating OSGi Bundles

Creating OSGi bundles is similar to creating normal Eclipse plug-ins. On the first page of the New Plug-In
Wizard, select an OSGi framework as the target instead of an Eclipse platform.

35

Service Development Environment (SDE) 10/2010

Note that you might need to create a plugin.xml file by hand when using this option, as the Extensions tab is
hidden by default for OSGi bundles.

4.2.3.3 Keeping Code Independent from the Development Environment
Normally, tools should be usable both within the context of the Development Environment and without. This

can easily be achieved by creating separate plug-ins for the main code and the Development Environment
integrator:

1. Create one or more bundles or plug-ins for the main code. These bundles or plug-ins contain the code
to be executed both within the Development Environment and without.

2. Create an additional bundle which depends both on the SDE core and on the main bundles, and which
contains the extension definition and service interface for the SDE core.

3. Add this additional bundle to your Development Environment distribution, but not to your normal
distribution.

4.2.3.4 Providing Ul
If you would like to provide additional Ul to the rather basic generic invocation wizard of the Development

Environment, you can use the full power of Eclipse to add such Ul as the Development Environment does not
impose any restrictions.

However, please ensure that all relevant functions can also be reached via the Development Environment, as it
should be possible to orchestrate the Development Environment without Ul.

36

Service Development Environment (SDE) 10/2010

5 Where to Go from Here

The development process of the core Development Environment is supported by an installation of the TRAC
tool, which provides an integration of a Wiki, SVN browser, timeline, and bug tracker.

http://svn.pst.ifi.lmu.de/trac/sde/

5.1 Publishing Your Own Tools
The recommended way of publishing tools for others to use is via the Eclipse update site mechanism. Please set

up an update site for your tools as soon as they are ready. There is a specific section on the SDE Tools Wiki to
list existing tools and their update sites; please add your site there.

5.2 Bug Reporting and Enhancement Requests

The recommended way for reporting bugs or enhancement request is by using the SDE Tools Wiki, which
contains a tracker for exactly this purpose. This way you can also check if others are having the same issues, or
comment on their proposals.

37

http://svn.pst.ifi.lmu.de/trac/sde/

Service Development Environment (SDE) 10/2010

6 References

6.1 Figures

Figure 1: Service Development Environment architeCtureccooeoeieieienenenenecee 3
Figure 2: Selecting SOftware UPUALeSccocvveieieiiiiie e 6
Figure 3: Update SiteS iN ECHPSEcveiiiiiiiieiieee s 7
Figure 4: Finishing inStallation............ccovoiiiiii e 7
Figure 5: Opening the SDE perspective, take 1 ... 9
Figure 6: Opening the SDE perspective, take 2ccoccviieiveieiiese e 10
FIQUIe 7: SDE PEISPECTIVE.ciuieiiiieeete ettt bbb 10
FIGUIE 8: HUQGO/RT ...ttt ettt et et et e et e sbeeteene e s teenaeanaenneas 11
Figure 9: Invoking a function using the generic wizard Ulcccooviiiinninininiceee, 12
Figure 10: Choosing a file @S @ Parameter..........cccecveieeieiieie e 13
Figure 11: A SUCCESSTUL Cal ..o 14
Figure 12: An object on the blackboardcccoooeiieii i 14
Figure 13: Selecting a bean from the blackboard..............cccooiiiiiiiiiiee 15
Figure 14: The SDE Shellcovoieeee et 16
FIQUIe 15: AN SDE SCHIPL ..ot bbbt 16
Figure 16: Running an SDE Shell SCript ..o 17
Figure 17: An SDE TOOI SCIIPL.....oiiiiieiiiiieeeeiee e 17
Figure 18: A tool converted from JAVaSCrIPLcooeiviiiiic i 18
Figure 19: Creating a graphical Orchestrationcccooereiirininiiiee e 19
Figure 20: Graphical Orchestration €ditOr...........ccccviiieie e 20
Figure 21: Creating @ TUNCHION..........oiiiiiiie e 20
Figure 22: A COMPIELE TUNCLION.oiiiiiiiiicee e 21
Figure 23: TOOI Name and IDc.ocoveiiiiiiiie et 21
Figure 24: The HUGO/RT WIZAITcc.oiuiiiiiiiiiiiiieiee e 22
Figure 25: Development Environment Technical Architecturecccoccevveveiiciiece e, 23
Figure 26: RegiStering @ t00]ccuoiiiiiiiii e 24
Figure 27: Creating a New plug-iN PrOJECE.........coiiiiieiie et 26
Figure 28: Adding the dependency t0 the COTe........ccoiiiiiiiiiiiieee e 27
Figure 29: Adding a NEeW XIENSION, L......cociieiiiieiicie et 28
Figure 30: AJdINg @ NEW EXTENSION, 2.......oiuiiuiiiiiiieieieiee ettt bbbt 29
Figure 31: An interface for atO0l.........cocoiiiiiiiiii s 29
Figure 32: Java annotations for an SDE t001..........ccccciiiiiiiiiiiiineeeee e 30
Figure 33: XML for the plugin.Xml..........ccoviiiiiii e 31
Figure 34: Finished tool definition ...t 32
Figure 35: RUNEIME TaDooiiiiic e e 33
Figure 36: New t00] INSTAHEcooiiiiiieii e 34
Figure 37: ISensoriaModelHandler interfacecccoovveiiiiiiiciie e 34
Figure 38: Defining options as Java annotations............cooevereiinenieiienesese e 35
Figure 39: Implementing 1SensoriaConfigurableToolc.cccov i, 35

38

Service Development Environment (SDE)

10/2010

6.2 Links

Internal Links
Name

Service Development
Environment SVN

Service Development
Environment Update Site

Service Development
Environment Wiki

External Links
Name

Eclipse 3.4 Downloads
Eclipse Project

Java SDK

OSGi

PDE

TRAC

Link

http://svn.pst.ifi.Imu.de/svn/sde/

http://svn.pst.ifi.Imu.de/update/sde/

http://svn.pst.ifi.Imu.de/trac/sde/

Link

http://download.eclipse.org/eclipse/downloads/

http://www.eclipse.org/

http://java.sun.com/javase/downloads/index.jsp

http://www.0sgi.org/

http://www.eclipse.org/pde/

http://trac.edgewall.org/

39

http://svn.pst.ifi.lmu.de/svn/sde/
http://svn.pst.ifi.lmu.de/update/sde/
http://svn.pst.ifi.lmu.de/trac/sde/
http://download.eclipse.org/eclipse/downloads/
http://www.eclipse.org/
http://java.sun.com/javase/downloads/index.jsp
http://www.osgi.org/
http://www.eclipse.org/pde/
http://trac.edgewall.org/

